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The dynamics of one and two identical spheres rolling in a nearly levitating upflow of air obey the Langevin
equation and the fluctuation-dissipation relation �Ojha et al. Nature �London� 427, 521 �2004�; Phys. Rev. E
71, 016313 �2005��. To probe the range of validity of this statistical mechanical description, we perturb the
original experiments in four ways. First, we break the circular symmetry of the confining potential by using a
stadium-shaped trap, and find that the velocity distributions remain circularly symmetric. Second, we fluidize
multiple spheres of different density, and find that all have the same effective temperature. Third, we fluidize
two spheres of different size, and find that the thermal analogy progressively fails according to the size ratio.
Fourth, we fluidize individual grains of aspherical shape, and find that the applicability of statistical mechanics
depends on whether or not the grain chatters along its length, in the direction of airflow.
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I. INTRODUCTION

There is a growing list of driven, far-from-equilibrium
systems where the dynamics of microscopic fluctuations are
characterized by an effective temperature. One of the earliest
examples is the kinetic energy associated with velocity fluc-
tuations in a sheared granular material �1�. More recent ex-
amples in granular physics include dilute grains driven
within a horizontal plane �2–6�, as well as flowing granular
liquids �7–12� and vertically vibrated granular gases �13–16�.
Wider ranging examples include chaotic fluids �17,18�, spin
glasses �19,20�, glasses �21,22�, colloids �23,24�, and foams
�25�, which are all far away from equilibrium. In some of
these cases �4,5,12,15,16,25�, the behavior is in perfect anal-
ogy with that expected for a system in thermal equilibrium.
Degrees of freedom are populated according to a density of
states and Boltzmann factor, and correlation-response rela-
tions all hold, with a single effective temperature whose
value is set by the nature of the energy injection mechanism.
In other cases, such a thermal analogy is more limited and
does not hold in detail; for example, the distributions may
not be described by a Boltzmann factor or the effective tem-
perature may not be uniquely defined.

An outstanding question is how to predict whether or not
the thermal analogy holds. What do the systems in Ref.
�4–6,12,15,16,25� have in common, and how do they differ
from other driven systems? Here we seek insight by system-
atically perturbing one case for which the analogy unargu-
ably holds in all detail, in hopes that it may be progressively
upset. In particular, we focus on a small number of grains
fluidized in a nearly levitating upflow of air. While grains
thus never leave the plane, they can nevertheless be driven
randomly within the plane by the random shedding of turbu-
lent wakes at a rate set by the Strouhal number �26,27�. The
Reynolds number based on sphere size is of order 104. Under
these conditions, a single sphere confined within a circular
cell rolls stochastically, without slipping, exactly like a
Brownian particle in a two-dimensional harmonic trap �5�.
Specifically, the dynamics obey a Langevin equation where
the random force autocorrelation is proportional to the vis-
cous drag memory kernel and the effective temperature ac-

cording to the fluctuation-dissipation relation. For a variety
of conditions, the root-mean-squared displacement of the
sphere from the center of the trap and the mean-squared
speed of the sphere, respectively, are given by �6�

��r2� = �0.20 ± 0.02�Rcell, �1�

�v2� = 0.7��air

�e
	 u3

�gD
. �2�

Here �e=me / ��4/3���D /2�3�; me=m+ I / �D /2�2 is the effec-
tive inertial mass of the sphere; m, I, and D are, respectively,
the mass, moment of inertia, and diameter of the sphere; �air
and u are, respectively, the density and flow speed of the air;
g=980 cm/s2 is gravitational acceleration; and Rcell is the
radius of the sample cell. Physically, Eq. �2� can be under-
stood by balancing energy input, via collision between the
sphere and a sphere-sized volume of air, with energy dissi-
pation via viscous drag. Geometrically, Eq. �1� can be under-
stood by a picture of the repulsion between the cell wall and
the turbulent wake, which expands as it moves downstream.

The detailed thermal analogy for the behavior of one and
two nearly levitated gas-fluidized spheres was completely
unexpected. In this paper, we seek insight via systematic
perturbation of the original experiment. To begin, we first
describe the experimental apparatus and analysis procedures
used throughout. In the next four sections, we describe the
perturbations and results, with one perturbation per section.
We shall demonstrate that the thermal analogy is very robust
with respect to some of these perturbations. We also shall
demonstrate a control parameter by which the thermal anal-
ogy may be progressively upset.

II. EXPERIMENTAL DETAILS

Our methods for fluidizing grains and tracking their posi-
tions are similar to those of Refs. �5,6�, but with some em-
bellishments that we describe in detail here. As before, the
heart of the apparatus is a rectangular windbox, 1.5�1.5
�4 ft3, standing upright. A circular sieve with mesh size
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300 �m sits in a 12-in. circular hole on the top. The sieve is
horizontal, so that the grains feel no component of gravity
within the plane of motion and so that the air flow is upward
counter to gravity. Except in the final section, all grains are
spherical and roll without slipping. The rotational motion is
therefore coupled to the translational motion and can be ac-
counted for by an effective inertial mass as in Eq. �2�. A
digital charge-coupled device video camera �Pulnix 6710,
8 bits deep, 120 Hz frame rate�, and a ring of six 100 W
incandescent lights, are located approximately three feet di-
rectly above the sieve, mounted to a scaffolding which in
turn is mounted to the windbox. A blower is connected at the
base of the windbox to provide an upward airflow perpen-
dicular to the sieve. A hot-wire anemometer measures the
flow rate, and verifies its uniformity. Previously, a perforated
metal sheet was fixed in the middle of the windbox to break
up large scale structures in the airflow. To ensure even more
uniformity, we now use two perforated metal sheets with a
1-in.-thick foam air filter sandwiched in between.

The control of the camera, and all image processing, are
accomplished within LABVIEW. In all runs, images are har-
vested at 120 frames per second and written to hard disk for
postprocessing. To minimize the size of the data set, and
hence to optimize the maximum possible run length, we first
threshold the images to binary so that each grain appears as a
white blob on a black background. The illumination and
thresholding level are adjusted so that each blob corresponds
closely to the entire projected area of the grain. Successive
binary images are encoded as a lossless format AVI movie
�Microsoft RLE�. Previously, we used a custom encoding
scheme that is optimal only for a very small number of
spherical grains. The AVI format requires more disk space,
but is also more flexible for large numbers of grains.

For postprocessing we also use LABVIEW. If the grains are
far enough apart as to be distinct white blobs that are com-
pletely surrounded by black, then we use LABVIEW’s “IMAQ
Particle Analysis” algorithm to locate the center of bright-
ness of each blob to subpixel accuracy. However, when two
grains collide and their blobs touch, then this algorithm iden-
tifies only the center of the combined two-grain blob. When
the total number of identified blobs falls below the known
number of grains, we must modify our tracking procedure.
The widely used technique of Ref. �28� cannot be invoked,
because it requires the grain separation be large compared to
grain size. Instead, we apply an erosion algorithm, in which
a square mask consisting of ones �white� and zeros �black� is
run over the binary image. The output at each pixel is one
�white� if all the image pixels under the white region of the
mask are white; otherwise, the output is zero �black�. For
spherical grains, we choose a mask that is about 2 /3 the
grain size, that is white throughout the largest inscribed
circle, and that is black outside this region. This construction
preserves the circular shape of the blobs, while eroding their
size. It also separates blobs that are in contact, and optimizes
their circularity after separation. After applying such an ero-
sion, we then invoke the same centroid-finding algorithm as
before. These procedures are demonstrated in Fig. 1, which
shows two grains before, during, and after collision.

There are two more steps. First, the grain coordinates
measured in each frame must be identified with the correct

corresponding grains in the previous frame. This is aided by
the fast frame rate of our camera, which is such that the
maximum displacement in one frame is much less than the
grain size. Finally, position vs time data are fitted to a third-
order polynomial within a window of ±5 points in order both
to smooth and to differentiate to second order. Gaussian
weighting that is nearly zero at the edges is used to ensure
continuity of derivatives. The rms deviation of the raw data
from the polynomial fit is 0.001 cm, which we take as an
estimate of position accuracy. This and the frame rate give an
estimate of speed accuracy as 0.1 cm/s. Indeed these num-
bers correspond to a visual inspection of the level of noise in
time traces.

III. ONE SPHERE IN A STADIUM

Our first perturbation is motivated by the very form of Eq.
�1�, which says that the rms position of the sphere is set by
the radius of the sieve. So instead of using a circular sample
cell, we now construct a stadium-shaped sample cell by plac-
ing appropriate wooden inserts into contact with the sieve
both above and below. A binary image of our stadium, with a
D=1 in. nylon sphere, is shown in the inset of Fig. 2. Cer-
tainly the elongated boundary will affect the confining ball-
wall potential, with the sphere expected to move farther
along the long axis. Due to loss of symmetry, the rms posi-
tion and speed of the grain could now both be different along
the long and short axes, which would be a direct violation of
the thermal analogy. To investigate, we fluidize the nylon
ball with an upflow of air at speed u=750 cm/s, and we
track its position with the methods described above.

Results for the position and speed distributions along the
two axes of the stadium are displayed in Fig. 2. All four have

FIG. 1. �a� The measured blob area, and �b� the center-to-center
separation, for two grains in collision. The grayed stripe indicates
the time interval the grains are in close enough proximity so that
they are imaged as as a single blob �inset a�, which is eroded pro-
ducing two smaller separated circles �inset b�.
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the same Gaussian shape, characteristic of a Brownian par-
ticle in a harmonic trap, as seen before. Though it couldn’t
have been expected, the speed distributions remain identical
along the two axes. However, the sphere now has wider ex-
cursions along the longer axis. The observed rms displace-
ments are ��xl

2�=0.83 cm and ��xs
2�=0.56 cm for long and

short axes, respectively. The ratio of these displacements is
1.48, which is very close to the ratio of long to short dimen-
sions of the stadium, �22.8 cm� / �15.2 cm�=1.50, in accord
with the scaling of Eq. �1�.

If the thermal analogy holds for both the position and
momentum degrees of freedom, then the spring constants
along the two axes can be deduced from the equipartition of
energy:

T = me�vl
2� = me�vs

2� = kl�xl
2� = ks�xs

2� , �3�

where T is the effective temperature measured in units of
energy. To test this relation, we compare with an auxiliary
mechanical measurement of the spring constants. As in Ref.
�5�, we tip the entire apparatus by a small angle � away from
horizontal and measure the shift ��x� in the average position
of the sphere down the plane. The new average position is
where the spring force balances the force of gravity acting
within the plane:

k��x� = mg sin � . �4�

This is done for orientations of the stadium with the long
axis both parallel and perpendicular to the tilting direction.

The results for the shift in average position are plotted as
symbols vs the sine of the tilt angle in Fig. 3. The expecta-
tions based on Eq. �3� and the position and speed statistics
are also plotted in Fig. 3, now as a shaded region that reflects
measurement uncertainty in the rms displacements and
speeds. Indeed, the two results agree well.

To drive home the validity of the thermal analogy for a
nearly levitated sphere in a stadium-shaped cell, we now
compute the total mechanical energy E as the sum of kinetic
and potential energies at each instant in time. We then com-
pute the distribution of total energy sampled over the entire
run. The data, shown in the main plot of Fig. 4, agree nicely
with the expectation for a thermal system, P�E�
= �E /T2�exp�−E /T�, which is given by the density of states
times the Boltzmann factor with no adjustable parameters.
The insets show no correlation in phase-space scatter plots of
speed vs position.

FIG. 2. �Color online� Distributions for the components of �a�
position and �b� velocity measured for a 1-in. nylon sphere along
the long and short axes of a stadium-shaped trap. To within mea-
surement uncertainty, these distributions are all Gaussian �dashed
curves�.

FIG. 3. �Color online� Shift in average position of a fluidized
sphere with respect to the sine of the angle by which the entire
apparatus is tilted. Data are shown by symbols, and prediction
based on the equipartition assumption and the variance of the posi-
tion and speed distributions are shown by shaded regions. The ex-
perimental conditions are the same as in Fig. 2.

FIG. 4. �Color online� The energy distribution for a 1-in. nylon
sphere in a stadium-shaped trap, under the same conditions as in
Figs. 1 and 2. The dashed curve shows the expectation based on the
known effective temperature and the product of density of states
times a Boltzmann factor. The insets show scatter plots of velocity
and position components; successive points are separated by several
seconds, longer than the decay time of the velocity autocorrelation
function.
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While we might have hoped to tune the validity of the
thermal analogy by the value of the aspect ratio of the
sample boundary, apparently it is robust with respect to this
perturbation and we must look elsewhere.

IV. FIVE SPHERES OF DIFFERENT DENSITY

Our second perturbation is motivated by the form of Eq.
�2�, which specifies the mean squared speed of individually
fluidized spheres as a function of the air and sphere proper-
ties. Note that Eq. �2� gives the scaling of the mean kinetic
energy with sphere density as K
1/�e, due to the way en-
ergy is injected by turbulent wakes. If this relation also holds
when multiple spheres of different density are in the sample
cell, then the spheres would have different temperatures. To
test this possibility we now simultaneously fluidize five solid
spheres of the same diameter D=2.54 cm, but of different
density. The materials and effective densities of the spheres
are as follows: wood 0.95 g/cm3; polypropylene
1.29 g/cm3; nylon 1.57 g / cm3; teflon 3.02 g/cm3; Al2O3 ce-
ramic 5.33 g/cm3. We note that the wooden ball is slightly
aspherical, and its diameter is about 0.5% smaller than the
others. The air speed is u=600 cm/s, the trap is circular, and
the sieve is perpendicular to gravity.

The normalized speed distributions are displayed
in Fig. 5 for the five spheres. All have the same Gaussian
form as for a thermal particle in two dimensions, P�v�
= �2v / �v2��exp�−v2 / �v2��. But evidently the lighter spheres
move faster, on average, than the denser spheres. The mean
kinetic energy for each sphere is plotted in Fig. 6 vs effective
density. There is a slight upward trend, with a difference of
about 30% from lightest to densest spheres. This rise is
slightly larger that the measurement uncertainty. More cru-
cially, it is also slight in comparison with the factor of five
decrease predicted by Eq. �2� for one ball alone, K
1/�e;
Eq. �2� can be completely ruled out for multiball systems.
Apparently the spheres exchange energy, mainly through in-
teraction of their wakes as well as through occasional direct
collisions, and thereby come to almost the same temperature.
The thermal analogy is fairly robust with respect to pertur-
bation of sphere density.

V. TWO SPHERES OF DIFFERENT SIZE

Our next perturbation is also motivated by the form of Eq.
�2�, which implies that the mean kinetic energy of an indi-
vidually fluidized sphere scales with sphere diameter as K

D5/2. If this holds when multiple spheres of different di-
ameter are simultaneously fluidized, then the spheres would
have different temperatures. To test this possibility, we flu-
idize pairs of nylon spheres of different diameter. The air-
speed is u=770 cm/s and the trap is circular. By varying the
choice of spheres, we have examined the behavior for seven
diameter ratios ranging from about 0.5 to 5.

The speed distributions are always nearly Gaussian. This
is quantified in Fig. 7�a�, which shows the kurtosis �v4� / �v�4

of the speed distribution for each sphere as a function of
diameter ratio. The values are close to 3, the Gaussian ex-
pectation, except for two cases. This in and of itself is a
violation of the thermal analogy. However, it is not so drastic
that the mean kinetic energy, and hence the effective tem-
perature, become ill defined.

The ratio of mean kinetic energies of the two balls, which
equals the ratio of their effective temperatures, is plotted vs
diameter ratio in Fig. 7�b�. The kinetic energies are nearly
equal for diameter ratios of less than 2. But for increasing
diameter ratio, the larger sphere becomes progressively hot-
ter than the smaller sphere. Evidently, the diameter ratio is a
control parameter that can be varied to systematically break
the thermal analogy. This breakdown appears to be quite
gentle, though. The temperature ratio is not as great as ex-
pected by Eq. �2�, which again we find to be incorrect for
multiball systems. Also, the leading behavior is not linear,
but rather quadratic in the diameter ratio. This may be ame-
nable to theoretical modeling.

Before closing this section, we now consider the physical
origin of the breakdown of the thermal analogy vs diameter
ratio. The reason, actually, is immediately obvious when
viewing the system directly. The two spheres usually repel
one another through interaction of their wakes, as discussed
in Ref. �6�. However, if they approach close enough, then

FIG. 5. �Color online� Speed distributions for grains of equal
diameter but different density. In order of decreasing density, the
sphere materials are ceramic �Al2O3�, Teflon, nylon, polypropylene,
and wood. The inset shows a photograph of the system.

FIG. 6. �Color online� Average kinetic energy vs density, based
on the speed distributions shown in Fig. 5 for five spheres of equal
diameter. To within measurement uncertainty, the results are nearly
constant, as shown by the solid horizontal line. The expectation
based on single-grain behavior, Eq. �2�, is shown by a dashed curve.
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they come into lasting contact and the upflow of air exerts a
net total force on the pair causing them to accelerate straight
across the cell until reaching the boundary. The direction of
motion is such that the large sphere appears to chase the
small sphere out of its territory. We speculate that the loss of
symmetry of the two-ball pair causes the vortices to be shed
preferentially along the line of centers, resulting in a net
force.

The prevalence of this “chasing” phenomenon may be
quantified by the equal-time velocity cross correlation
�vb�t� ·vs�t��, where the subscripts denote “big” and “small”
spheres as before. For the thermal analogy to hold, this quan-
tity must vanish because all kinetic degrees of freedom must
be independently populated. During a chase, however, the
two velocities are equal and hence perfectly correlated. Data
for the equal-time velocity cross correlation, made dimen-
sionless by the rms speeds of the two balls, are plotted vs
diameter ratio in Fig. 7�c�. By contrast with the effective
temperature ratio, this rises abruptly from zero for diameter
ratios greater than 1. Also by contrast, it reaches a peak for a
diameter ratio of about 3 and then decreases. If the size dis-
parity is too small, then the loss of symmetry is not enough
to cause much chasing. If the size disparity is too great, then
the large grain slowly rolls without regard for the small ball,
which quickly flits about and is repelled as though from a
stationary object. We believe the thermal analogy is recov-
ered in this limit, but with the two balls being differentially
“heated” by the upflow of air.

VI. ONE ASPHERICAL GRAIN

In the above sections, and also in Refs. �5,6�, the shape of
the grain is spherical. This is special because it permits the
grain to roll freely in all directions without sliding. It is also
special because it permits vortices to be shed equally in all
directions. To explore for qualitatively new phenomena, and
to seek another means of violating the thermal analogy, we
now perturb the grain shape. The objects we fluidize are
listed in Table I and pictured in Fig. 8: various pharmaceu-
tical pills, a cylindrical wooden rod, and a dimer consisting
of two connected hollow plastic spheres. When individually
fluidized by an upflow of air, the pictured grains all translate
and rotate seemingly at random. A few of the grains are
axisymmetric, like the dimer; however, they exhibit virtually
no rotation about the axis of continuous symmetry. While the
spheres in previous sections roll without slipping, here the
aspherical grains must slide in order to translate or rotate.

We may characterize the motion of these grains in terms
of the time dependence of their center-of-mass position and
their angular orientation. The former is deduced as per the
spherical grains from the center of brightness. The latter is
deduced from second moments of the spatial brightness dis-
tribution. Then we differentiate to measure both translational

FIG. 7. �Color online� �a� Kurtosis of the velocity distributions,
�b� ratio of average kinetic energies, and �c� equal-time velocity
cross correlation for pairs of nylon spheres vs the ratio of their
diameters. For the thermal analogy to hold, the kurtosis should
equal 3, the kinetic energy ratio should equal 1, and the equal-time
velocity cross correlation should vanish. The ratio of average ki-
netic energies predicted by single-sphere behavior, Eq. �2�, is shown
by a dashed curve.

TABLE I. The density, length, width, height, mass, and moment of inertia of five aspherical grains. For
computation of density and moment of inertia, the white, silver, and wood grains are approximated as
cylinders, while the brown grain is approximated as a block. The dimer is composed of two polypropylene
shells of thickness 0.14 cm.

Name � �g/cm3� L �cm� W �cm� H �cm� m �g� I �g cm2�

White 0.685 2.12 0.848 0.848 0.82 0.344

Silver 0.951 1.52 0.586 0.586 0.39 0.083

Brown 0.937 1.94 0.966 0.888 1.56 0.611

Wood 0.671 4.75 0.540 0.540 0.73 1.386

Dimer 0.256 5.08 2.540 2.540 4.40 11.34
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and rotational speed distributions. None of the grains is chi-
ral by design, since that would lead to steady whirling in one
direction. Nonetheless, some whirling can occur due to im-
perfections in shape. Therefore we measure both the average
angular speed ��� as well as fluctuations 	� about this aver-
age.

A summary of the results for all grains, individually flu-
idized, is shown in Fig. 8. The kurtosis of the translational
and rotational speed distributions is shown in the top plot.
The results appear statistically greater than 3, the Gaussian
result, except for the translational velocity components of the
dimer. The average kinetic energies are shown in the bottom
plot. They too exhibit a violation of the thermal analogy
since the translational kinetic energy is greater than the rota-
tional kinetic energy. At this airspeed, the energy associated
with whirling, I���2 /2, is at least ten times smaller than the
energy of angular speed fluctuations, I�	�2� /2. Therefore,
the whirling caused by slight shape imperfections is not re-
sponsible for the breakdown of the thermal analogy.

To systematically explore the range of behavior for as-
pherical grains, we now vary the airflow for just one shape.
We choose the silver pill, for which the thermal analogy
works best in Fig. 8. Results for the average energy in each
of the three kinetic degrees of freedom m�vx

2� /2, m�vy
2� /2,

and I�	�2� /2, as well as the whirling energy I���2 /2, are
shown in Fig. 9 along with the kurtosis of the distributions.
Counter to intuition, and also counter to Eq. �2�, the transla-

tional kinetic energy is nearly constant while the rotational
kinetic energy actually decreases with increasing airspeed.
As airspeed decreases, the kurtosis values decrease toward 3
and both the whirling and rotational fluctuation energies ap-
proach the translational kinetic energies. Except for the
whirling, the motion is more nearly thermal at lower air-
speeds.

The sequence of behavior in Fig. 9 correlates with the
motion of the grain perpendicular to the sieve, which cannot
be captured by our usual video methods. At low airspeeds,
the grain is in physical contact with the sieve; translational
motion thus requires sliding. At intermediate airspeeds, the
center of mass is raised somewhat, and the grain chatters
back and forth along its length. This chattering becomes
more prevalent as the airspeed increases. At the highest air-
speeds, the chattering motion continues but with the impor-
tant difference that occasionally the grain scoots rapidly
across the cell. This is somewhat reminiscent of the intermit-
tent chasing observed for two spheres of different size, and it
too ruins the thermal analogy. Perpendicular motion is im-
portant for the other aspherical grains, as well. At the given
airspeeds in Fig. 8, the white and silver grains both chatter
steadily. The brown grain, wooden rod, and dimer all slide
without chattering, like the silver grain at low airspeeds. To
fully characterize and understand the behavior of aspherical
grains, it would be necessary to measure their out-of-plane
motion.

VII. CONCLUSION

In summary we have explored four systematic perturba-
tions to an experiment on nearly levitated spheres that was
previously �5,6� discovered to behave in perfect analogy to a
thermal system. Here we find that the statistical mechanical
description is robust with respect to variation the shape of

FIG. 8. �Color online� �top� Photographs of five aspherical
grains, �a� the kurtosis of the speed distributions, and �b� the aver-
age kinetic energies, for the two translational and the one rotational
degrees of freedom when these grains are individually fluidized.
The airspeeds are 910 cm/s for the three leftmost grains, and
750 cm/s for the two rightmost grains.

FIG. 9. �Color online� �a� The kurtosis of the speed distribu-
tions, and �bottom� the average kinetic energies, for the two trans-
lational and the one rotational degrees of freedom for the silver
grain in Fig. 8, as a function of the fluidizing airspeed.
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the sample cell and with respect to the densities of the
spheres. This adds to the growing list of driven out-of-
equilibrium systems for which an effective temperature may
be defined and used in the usual statistical mechanical sense.
However, we also find that the spheres must have the same
diameter or else the thermal analogy progressively breaks
down as the size disparity increases. Furthermore, the anal-
ogy is well controlled only for spherical grains. It can work
for pill-shaped objects, but depends on out-of-plane motion
that has not yet been well characterized. We hope that the
smooth, gradual breakdown as a function of diameter ratio

will stimulate theoretical work. This could lead to a better
general understanding of when the concepts and tools of sta-
tistical mechanics can be invoked for driven far-from-
equilibrium systems.
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